Priorities

New Method For Trapping CO2 as Solid Rock Could Help to Fight Climate Change

New Method For Trapping CO2 as Solid Rock Could Help to Fight Climate Change

by The Daily Eye Team November 28 2016, 3:50 pm Estimated Reading Time: 1 min, 18 secs

There’s no denying that 2016 has been a year of environmental extremes. Think “extraordinarily” hot Arctic temperatures, rapidly melting glaciers, unprecedented extinctions, and month-after-month of broken climate records. Now, perhaps more than ever, a bit of good news would be welcome.

So, here it is: A groundbreaking experiment out of Washington state has shown that pure carbon dioxide (CO2) can be injected into basalt rock and naturally converted into a stable, solid mineral. Earlier laboratory studies suggested this could take millennia to occur, but the recent field trial was successful in just two short years.

This is hugely significant for a couple of reasons. For starters, as Motherboard previously pointed out, human activities emit around 40 billion tons of CO2 into the atmosphere each year. Climate scientists agree that greenhouse gas emissions are the primary driver of global warming, and to mitigate the progression of climate change, we’ll need to find a way to reduce or capture much of that carbon.

Furthermore, the ability to sequester CO2 in basalt, specifically, is a tremendous bonus, according to Peter McGrail, a researcher at the US Department of Energy’s Pacific Northwest National Laboratory and lead author of the new study published in Environmental Science & Technology Letters.

Basalt is a common type of volcanic rock that contains elements like calcium, magnesium, iron, and manganese, and is found all across the world. Much of the ocean floor is founded on basalt, and vast fields of it have even been identified on our moon.

Read More at www.motherboard.vice.com




Disclaimer: The views and opinions expressed in this article are those of the authors and do not necessarily reflect the official policy or position of thedailyeye.info. The writers are solely responsible for any claims arising out of the contents of this article.